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A computer algorithm for the visualization of sample paths of anomalous diffusion processes is developed.
It is based on the stochastic representation of the fractional Fokker-Planck equation describing anomalous
diffusion in a nonconstant potential. Monte Carlo methods employing the introduced algorithm will surely
provide tools for studying many relevant statistical characteristics of the fractional Fokker-Planck dynamics.
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I. INTRODUCTION

Many physical transport problems take place under the
influence of an external field. A framework for the treatment
of anomalous diffusion problems under the influence of an
external force field is developed in terms of the fractional
Fokker-Planck equation �FFPE�. It provides a useful ap-
proach for the description of transport dynamics in complex
systems which are governed by anomalous diffusion �1� and
nonexponential relaxation patterns �2�. The FFPE can be rig-
orously derived from the generalized master equation or the
continuous-time random walk �CTRW� models as shown in
�3,4�. The numerical simulation of the anomalous transport
in a tilted periodic potential within the framework of the
FFPE through the underlying CTRW was presented recently
in �5�.

Several methods of solution of the FFPE in terms of the
probability density function are described in �1�. However,
the limitation of such an approach is that it does not allow
one to construct and analyze sample paths of the underlying
stochastic process. Here, we introduce a simple and efficient
method for computer simulation of sample paths of the
anomalous diffusion process described by the FFPE. This
lets us numerically investigate statistical properties of the
physical system under consideration, such as quantile lines
and the time evolution of the corresponding probability den-
sity function �PDF�. The proposed simulation method is a
consequence of a stochastic representation of the anomalous
diffusion process Y�t� described by the FFPE in terms of the
PDF function w�x , t�: namely, Y�t�=X�St�, where X��� is the
solution of a certain Itô stochastic differential equation and St
is the inverse-time �-stable subordinator. A basic feature
arising in this context is the random change of time of the
system. It reflects the fact that the distribution of waiting
times between successive jumps of a particle in the underly-
ing CTRW scenario is heavy tailed. Moreover, the process
X��� described by Langevin-type dynamics with standard
Brownian motion B��� sheds some light on the fractional
dynamics. Summing up, the stochastic representation of the

anomalous diffusion process described by the FFPE gives
another link to the foundation of microscopic dynamics
within the Langevin picture. A related problem for the frac-
tional Fokker-Planck dynamics for Lévy flights via the cor-
responding Langevin equation in the context of resonant ac-
tivation was numerically studied in �6�; see also �7�.

The article is structured as follows. In Sec. II we show
that a stochastic process, whose PDF obeys the dynamics of
the fractional Fokker-Planck equation, can be identified as
the subordination of two fundamental processes: the solution
of a certain Itô stochastic differential equation and the
inverse-time �-stable subordinator. Taking advantage of the
obtained representation, in Sec. III we find an efficient
method of simulating sample paths of the anomalous diffu-
sion process. We show that the introduced algorithm and
Monte Carlo methods allow us to detect and examine many
relevant statistical properties of the fractional Fokker-Planck
dynamics, such as quantile lines, evolution in time of the
PDF’s, asymptotic stationarity, self-similarity, etc.

II. STOCHASTIC REPRESENTATION OF THE FFPE

The celebrated FFPE, describing anomalous diffusion in
the presence of an external potential V�x�, is given by the
following formula:

�w�x,t�
�t

=0Dt
1−�� �

�x

V��x�
�

+ K
�2

�x2�w�x,t� . �1�

It was derived explicitly in �1�, where methods of its solution
were introduced and for some special cases exact solutions
were calculated. Here, the operator 0Dt

1−�, �� �0,1�, is the
fractional derivative of the Riemann-Liouville type �8�. It is
known that 0Dt

1−� introduces a convolution integral with a
slowly decaying power-law kernel, which is typical for
memory effects in complex systems �9�. In Eq. �1�, w�x , t�
denotes the PDF and the prime stands for the derivative with
respect to the space coordinates relating the force F�x� and
the potential through F�x�=−V��x�. The constant K denotes
the anomalous diffusion coefficient, whereas � is the gener-
alized friction constant. For �→1, Eq. �1� becomes the or-
dinary Fokker-Planck equation. The FFPE describes subdif-*Electronic address: marcin.magdziarz@pwr.wroc.pl
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fusion in accordance with the mean-squared displacement in
the force-free limit, and it obeys some generalized
fluctuation-dissipation theorem. Moreover, a generalization
of the Einstein-Stokes-Smoluchowski relation K=kBT /�
connects the generalized friction and diffusion coefficients
�1�.

The main aim of this section is to show that the solution
w�x , t� of the FFPE �1� is equal to the PDF p�x , t� �see Fig. 1�
of the subordinated process Y�t� obtained by a random
change of time,

Y�t� = X�St� , �2�

where the process X��� is the solution of the Itô stochastic
differential equation

dX��� = − V�„X���…�−1d� + �2K�1/2dB��� �3�

driven by standard Brownian motion B���. The subordinator
St, called the inverse-time �-stable subordinator, �� �0,1�,
is defined �10,11� as

St = inf��:U��� � t� , �4�

where U��� denotes a strictly increasing �-stable Lévy mo-
tion �14�—i.e., an �-stable process with Laplace transform

	e−kU���
 = e−�k�
. �5�

Moreover, the processes X��� and St are assumed to be inde-
pendent. Observe that both processes U��� and X��� are in-
dexed by the internal time �. The time is not real, physical
time. In order to find a position of a particle at the observable
time t, we have to introduce the inverse-time �-stable subor-
dinator St relating the internal time � and the observable
time t.

The physical properties of the subordinator St have been
discussed in detail in recent papers �10,11�. It is worth men-
tioning that St appears in a natural way and can be explicitly

derived when considering the CTRW scenario with heavy-
tailed waiting-time distributions between successive jumps
of the particle.

The advantage of the stochastic representation �2� relative
to other popular subordination methodologies, expressed in
the language of PDF’s through an integral transform �12,13�,
follows from the possibility of a straightforward computer
simulation �14� of sample paths of the anomalous diffusion
process X�St�.

Now, let us pass on to the main problem of the section.
Let the potential V�x� be an arbitrary nonconstant function.
First, we establish the relationship between the PDF g�� , t� of
St and the PDF u�t ,�� of U��� �see Table I for the notation
used�. Since U��� is the strictly increasing �-stable Lévy
motion, it is 1

� self-similar �15�; i.e., its PDF fulfills the scal-
ing relation

u�t,�� =
1

�1/�u� t

�1/�� ,

where u�t�=u�t ,1�. From Eq. �4� we get that Pr�St���
=Pr(U���� t), and therefore

g��,t� = −
�

��


0

t

u�y,��dy

= −
�

��


0

t 1

�1/�u� y

�1/��dy

= −
�

��


0

t/�1/�

u�y�dy

=
t

��1+1/�u� t

�1/��
=

t

��
u�t,�� . �6�

Now, using the fact that 	e−kU���
= û�k ,��=�0
�e−ktu�t ,��dt

=e−�k�
, we calculate the Laplace transform

ĝ��,k� = 
0

�

e−ktg��,t�dt

= 
0

�

e−kt t

��
u�t,��dt

= −
1

��

�

�k


0

�

e−ktu�t,��dt

TABLE I. Key processes and the corresponding notation.

Process Description Density

X��� standard diffusion f�x ,��
St inverse-time �-stable subordinator g�� , t�
Y�t�=X�St� anomalous diffusion p�x , t�
U��� �-stable Lévy motion u�t ,��

FIG. 1. �Color online� Evolution in time of the PDF of �a� the
anomalous diffusion X�St� with parameters V�x�=const, �=0.6,
K=1/2, and �=1 and �b� the standard diffusion �Brownian motion�.
The cusp shape of the PDF in the anomalous diffusion case con-
firms the correctness of the simulation algorithm �cf. �1��. The re-
sults in �a� were obtained by Monte Carlo methods using the intro-
duced algorithm.
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= −
1

��

�

�k
e−�k�

= k�−1e−�k�
. �7�

Using the total probability formula and the independence of
X��� and St, we get that the PDF p�x , t� of X�St� is given by

p�x,t� = 
0

�

f�x,��g��,t�d� ,

where f�x ,�� and g�� , t� are the PDF’s of X��� and St, respec-
tively. Consequently, in the Laplace space, the above formula
and Eq. �7� yield

p̂�x,k� = 
0

�

e−ktp�x,t�dt

= 
0

�

f�x,��ĝ��,k�d�

= 
0

�

f�x,��k�−1e−�k�
d� . �8�

Since the process X��� is given by the Itô stochastic differ-
ential equation �3�, its PDF f�x ,�� obeys the ordinary
Fokker-Planck equation �1�

�f�x,��
��

= � �

�x

V��x�
�

+ K
�2

�x2� f�x,��;

thus, in the Laplace space the following scaling relationship
between f�x ,�� and the solution w�x , t� of Eq. �1� holds
�12,16�:

ŵ�x,k� = k�−1 f̂�x,k�� .

Now, using Eq. �8� we finally obtain

ŵ�x,k� = k�−1 f̂�x,k�� = 
0

�

f�x,��k�−1e−�k�
d� = p̂�x,k� .

�9�

The last formula gives us the desired relation

w�x,t� = p�x,t� . �10�

Thus, we have shown that the solution w�x , t� of the FFPE
�1� describes the dynamics of the PDF of the subordinated
process X�St� defined in Eq. �2�. This result provides a physi-
cal interpretation of the anomalous diffusion phenomenon as
the process obtained by replacing the operational time � �12�,
in the standard diffusion X���, by the inverse-time �-stable
subordinator St. This change of the operational time of the
system is related to the fact that the distribution of the wait-
ing times between successive jumps of the particle in the
underlying CTRW scenario is heavy tailed.

In the special case of a constant potential V�x�=const, the
Fourier transform of w�x , t� is, in terms of the Mittag-Leffler
function E��·� �8�, given by

w̃�k,t� = 
−�

�

eikxw�x,t�dx = E��− Kk2t�� .

As shown in �10,11�, the same formula applies to the PDF
p�x , t� of X�St�, which confirms that the general result �10� is
physically correct. A closed-form solution of the FFPE can
be found in terms of the H-Fox functions �1�. Unfortunately,
these functions can be numerically evaluated only in a few
special cases.

In the next section we use the stochastic representation �2�
of the FFPE to construct a method of simulating sample
paths of the underlying anomalous diffusion process.

III. NUMERICAL APPROXIMATION OF SAMPLE PATHS

Below, we show how to numerically approximate sample
paths of the anomalous diffusion X�St�. In a recent paper �5�,
the authors present a method of simulating sample paths of
the anomalous diffusion via the underlying CTRW. In their
approach, it is necessary to generate successive residence
times of the particle, which are Mittag-Leffler distributed.
Since computer generation of Mittag-Leffler-distributed ran-
dom variables is troublesome, the authors suggest that one
can replace the Mittag-Leffler distribution by the Pareto one.
However, these two distributions, in spite of their obvious
similarities �i.e., asymptotic behavior�, have some distinct
differences, especially when the parameter � is close to 1.

Our method originates from a different concept; it explic-
itly uses representation �2�. It does not require generating
Mittag-Leffler-distributed random variables. In our algorithm
every trajectory is obtained as a subordination of two trajec-
tories of the processes X��� and St — i.e., the solution of the
stochastic differential equation �3� and the subordinator de-
fined as St=inf�� :U���� t�, where U��� is a strictly increas-
ing �-stable Lévy motion.

The proposed algorithm of approximation of the process
X�St� on the lattice �ti= i	t : i=0,1 , . . . ,N�, where 	t= T

N and
T is the time horizon, consists of two steps.

�I� Our first goal is to approximate the values
St0

,St1
, . . . ,StN

of the subordinator St. Therefore, we begin
with approximating a realization of the strictly increasing
�-stable Lévy motion U��� on the mesh � j = j	�,
j=0,1 , . . . ,M �it is recommended to choose 	��	t�. Using
the standard method of summing increments of the process
U��� we get

U��0� = 0,

U�� j� = U�� j−1� + 	�1/�
 j , �11�

where 
 j are the i.i.d. totally skewed positive �-stable ran-
dom variables. The procedure of generating realizations of 
 j
is the following �17–19�:


 j = c1
sin���V + c2��

�cos�V��1/� � � cos�V − ��V + c2��
W

��1−��/�

,

where c1= �cos��� /2��−1/�, c2=� /2, the random variable V
is uniformly distributed on �−� /2 ,� /2�, and W has expo-

FRACTIONAL FOKKER-PLANCK DYNAMICS:… PHYSICAL REVIEW E 75, 016708 �2007�

016708-3



nential distribution with mean 1. The iteration �11� ends
when U��� crosses the level T — i.e., when for some j0¬M
we get U��M−1�T�U��M�. Since U��� is strictly increas-
ing, such M always exists.

Now, for every element ti of the lattice �ti= i	t : i
=0,1 , . . . ,N�, we find the element � j such that U�� j−1�� ti

U�� j�, and finally, from definition �4�, we get that in such a
case �see Fig. 2�

Sti
= � j .

It is worth emphasizing that, since U��� is a strictly increas-
ing function, the above procedure of finding the values Sti

,
i=0,1 , . . . ,N, can be implemented efficiently.

�II� In the second step, our aim is to find the approximated
values X�St0

�, X�St1
�, …, X�StN

� of the subordinated process
X�St�. From the first step of the algorithm already we have at
our disposal the approximations St0

,St1
, . . . ,StN

. We start with
employing the classical Euler scheme to approximate the so-
lution X��� of the stochastic differential equation �3� on the
lattice ��̄k=k	�̄ :k=0,1 , . . . ,L� �it is also recommended to
choose 	�̄�	t�. Here L is equal to the first integer that

exceeds the value StN
/	�̄. From the Euler scheme �14� we

get

X��̄0� = 0,

X��̄k� = X��̄k−1� +
V�„X��̄k−1�…

�
	�̄ + �2K�1/2	�̄1/2
̄k, �12�

for k=1,2 , . . . ,L. Here 
̄k are i.i.d. random variables with

standard normal distribution, 
̄k�N�0,1�. Now, since the re-
alizations of X��� are continuous functions and since from
the iteration scheme �12� we have at our disposal the values
X��̄0� ,X��̄1� , . . . ,X��̄L�, we use the standard linear interpola-
tion in order to obtain the approximate values
X�St0

� ,X�St1
� , . . . ,X�StN

�. Thus, for every ti from the lattice

FIG. 2. �Color online� Visualization of the method of finding
the values Sti

used in the first step of the algorithm. If U�� j−1�� ti

U�� j�, then Sti
=� j �see text for details�.

FIG. 3. �Color online� Visualization of the linear interpolation
method used to find the values X�Sti

� in the second step of the

algorithm. In this case, X�Sti
�=

X��̄k+1�−X��̄k�

�̄k+1−�̄k
�Sti

− �̄k�+X��̄k� �see text
for details�.

FIG. 4. �Color online� Sample realizations of �a� the anomalous
diffusion X�St�, �b� the normal diffusion X���, and �c� the inverse-
time �-stable subordinator St, in the presence of a constant poten-
tial. The parameters are �=0.6, K=1/2, and �=1. The intervals
with X�St� being constant indicate the heavy-tailed residence times
of the underlying CTRW. The similarities between the constant in-
tervals of X�St� and St and the similarities between X�St� and X��� in
the remaining domain are distinct.

FIG. 5. �Color online� Sample realizations of �a� the anomalous
diffusion X�St�, �b� the normal diffusion X���, and �c� the inverse-
time �-stable subordinator St, in the presence of the external poten-
tial V�x�=x2 /2 �Ornstein-Uhlenbeck process�. The parameters are
�=0.7, K=1/2, and �=1. The intervals with X�St� being constant
indicate the heavy-tailed residence times of the underlying CTRW.
Note the similarities between the constant intervals of X�St� and St

and the similarities between X�St� and X��� in the remaining
domain.
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�ti= i	t : i=0,1 , . . . ,N�, we find such an index k that the con-
dition �̄kSti

�̄k+1 holds true, and finally, through the linear
interpolation �see Fig. 3�, we get that

X�Sti
� =

X��̄k+1� − X��̄k�
�̄k+1 − �̄k

�Sti
− �̄k� + X��̄k� .

The above algorithm allows us to simulate sample paths
of the process X�St� �see Figs. 4 and 5�, for the whole range
of the parameter �� �0,1� and for an arbitrary potential
V�x�. Let us note that the realizations obtained of the anoma-
lous diffusion process displayed in the top panels of both
figures do not allow for distinguishing the type of underlying
stochastic process. In order to see the essential differences
we need to perform a statistical analysis of the realizations.
Monte Carlo methods using the algorithm enable us to find
many relevant statistical characteristics of the model. It
works in the following way. For a time evolution of the PDF
p�x , t� �see Fig. 1�, we simulate 104 realizations and con-
struct a kernel density estimator using the Rozenblatt-Parzen
method �14�. The cusp shape of the pdf estimator confirms
the correctness of our algorithm by comparison with the ex-
act result for �=1/2 obtained in �1�.

A very useful tool for investigation of sample path dy-
namics was introduced in �14,18�. A p-quantile line, p
� �0,1�, for a stochastic process Y�t� is a function qp�t�
given by the relationship Pr(Y�t�qp�t�)= p. In Fig. 6 nine
quantile lines �10%, 20%,…, 90%� are constructed from 104

realizations of the anomalous diffusion process Y�t�=X�St�
with a constant potential V�x�=const. In Fig. 7 results for the
external potential V�x�=x2 /2 are displayed. Different shape
of the quantile lines indicates � /2 self-similarity �lines of the

form cit
�/2� in Fig. 6 and asymptotic stationarity �asymptoti-

cally parallel lines� in Fig. 7.

IV. CONCLUSIONS

We have introduced an efficient method for computer
simulation of sample paths of the subdiffusive process de-
scribed by the FFPE. This permits investigations of the frac-
tional Fokker-Planck dynamics of complex systems by
Monte Carlo methods.

We have shown that the solution w�x , t� of the FFPE �1� is
equal to the PDF p�x , t� of the subordinated process X�St�,
where X��� is the standard diffusion described by Eq. �3� and
St is the so-called inverse-time �-stable subordinator �4�. The
process St is a new operational time of the system and origi-
nates from the heavy-tailed residence times of the underlying
CTRW. The obtained stochastic representation is crucial in
constructing an algorithm of simulating sample paths of the
anomalous diffusion X�St�, which, in turn, allows us to detect
and examine many relevant properties of the system under
consideration. The algorithm can be applied for an arbitrary
potential V�x� and for any value of the parameter �� �0,1�.
This is a great advantage of the proposed method, since the
exact solution of the FFPE is known only in terms of the
H-Fox functions �1�, and this function can be numerically
evaluated only in a few special cases. Additionally, since the
algorithm uses stochastic representation �2�, we avoid all the
difficulties related to the simulation of the Mittag-Leffler dis-
tribution, which appeared in the method presented in �5�.

We expect that statistical tools proposed here will contrib-
ute to a better understanding of subdiffusion transport and its
dynamical foundation.

FIG. 6. �Color online� Estimated quantile lines and two sample
trajectories of the anomalous diffusion X�St� in the constant poten-
tial with parameters �=0.6, K=1/2, and �=1. Since in this case the
process is � /2 self-similar, every quantile line is of the form cit

�/2,
where ci are the appropriate constants. Clearly, the model is not
asymptotically stationary �compare with Fig. 7�.

FIG. 7. �Color online� Estimated quantile lines and two sample
trajectories of the anomalous diffusion X�St� with parameters
�=0.7, K=1/2, and �=1. In this case the external potential
V�x�=x2 /2 is used. The shape of the quantile lines �asymptotically
parallel lines� indicates the asymptotic stationarity of the model,
which confirms the correctness of the algorithm used. The
stationary PDF is given by the Gibbs-Boltzmann distribution
p�x�=c1 exp�−c2V�x��, where c1�0 and c2�0 are appropriate nor-
malizing constants.
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